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Abstract. In this paper we tested a set of examples, presented in the literature,
with a general fuzzy optimization approach using Simulated Annealing (SA). For
linear fuzzy problems, we selected a set of examples from well-known authors. For
non-linear fuzzy optimization problems we selected two crisp problems and only
two fuzzy examples because there are not many fuzzy non-linear examples in the
literature. The comparison of the results, obtained with our approach and the ones
shown in the literature, allow us to highlight the flexibility, generality and perfor-
mance of this fuzzy approach to solve either linear or non-linear fuzzy optimization
problems.
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1 Introduction

The main objective of this paper is to assess the generality, flexibility and
performance of a general fuzzification model solved with the simulated an-
nealing algorithm (SA) [1], [2], [3]- The fuzzification model allows fuzzy co-
efficients, fuzzy resources, fuzzy goals and combinations. This general fuzzy
optimization model is able to handle linear and non-linear problems and even
unfeasible problems. However, when we have to deal with fuzzy coefficients
there is a price to pay because the fuzzification model transforms the problem
into a larger dimension one (more constraints and variables) and which also
is non-linear.

Since the formulation of the model is non-linear, when we have fuzzy co-
efficients, we should use an algorithm independent of the formulation, such
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as SA, to solve the problem. Our rational in this work is that instead of dis-
cussing and comparing details of the fuzzy approach used, with other models
proposed in the literature, we use their examples to compare their results
with the ones obtained with our approach. The set of examples tested can
act as a test-bed for any fuzzy approach proposed in the literature.

Specifically, for linear problems we selected a set of examples from repre-
sentative authors and methods, such as: Carlsson and Korhonen [4]; [5]; Lai
& Hwang [6]; Sakawa [7]; Tanaka, Ichihashi and Asai [8]; Delgado, Verde-
gay and Vila [9, 10]; and Zimmermann [11]. In addition, we solved a linear
unfeasible solution example [12] to show that the approach formulation, can
also provide solutions for unsolvable crisp problems. For non-linear problems
we selected four examples, two fuzzy non-linear problem by Sakawa [7] and
two crisp problems [13]. The latter selection was based on the scarcity of
non-linear fuzzy examples (exceptions can be seen in [14] [7] [15]).

The selected set of examples are, first, formulated with the fuzzification
model of Moura-Pires and Ribeiro [1] [2] and then solved with an SA algo-
rithm implementation proposed by the authors [3]. With this comparison we
can show how general and flexible both the fuzzification model and the SA
algorithm are to solve different types of fuzzy optimization problems, from
linear to non-linear, as well as unfeasible problems.

This paper is organized as follows. This first section introduces the ob-
jectives of this work and gives a brief introduction of fuzzy optimization
concepts. Section 2 describes the main characteristics of the fuzzification
model, as well as of the solution algorithm used to solve all the examples
(different methods). Section 3 introduces the set of linear examples from
different authors, solves them and discusses the results obtained by these au-
thors and with our approach. Section 4 follows the same logic as section 3,
but introduces the set of non-linear examples tested. Section 5 presents the
conclusions.

2 Basics on the approach used for formulating and
solving the example set

In this section we introduce the main characteristics of the fuzzy approach
used in this paper [1] [2] [3], to formulate and solve a set of examples in fuzzy
optimization. To make this section more easy to read we divided it in four
subsections: the first briefly introduces fuzzy optimization main concepts; the
second subsection presents the fuzzification model used in this work to for-
malize the example set; in the third subsection we describe the implemented
solution process and the reasons to use the simulated annealing algorithm.

2.1 Introduction to fuzzy optimization

The main objective of a fuzzy optimization method is to find the “best” so-
lution (decision alternative) in the presence of incomplete information, i.e.,
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imprecise information and/or in the presence of “vague” limits in the infor-
mation. There exist many forms of imprecision in fuzzy optimization prob-
lems, as for example, variable coefficients that we do not know precisely (for
example, “processing times of about one hour for assembling a piece”) and
constraint satisfaction levels with imprecise limits (for example, “the total
processing time available is around 100 hours”).

A classical linear optimization problem consists on maximizing or min-
imizing a certain objective function subject to a set of constraints, which
express, for example, the resource limitations. Formally,

max /min Z = Cx
Az{>,<,=}B (1)
z>0

The fuzzy version of this problem is generally formalized as,

max / min Z=Cz
Az{><,=}B (2)
x>0

where Z represents a fuzzy goal, C is the vector of fuzzy costs, A is the matrix
that contains the fuzzy coefficients of the objective(s) and of the constraints
and B is the corresponding vector of the limits of the resources. The “tilde”
on top of the parameters means that they are defined by fuzzy sets. We
opted for using the “tilde” on top of the right hand side parameter and not
in the constraint sign has a uniform concept of fuzzy parameter for resource
limits, fuzzy coefficients and fuzzy goals. In section 2.2 this point is discussed
further.

The first fuzzy extension of the classical optimization problem to a fuzzy
environment is due to Bellman and Zadeh [16]. Based on the similarity model
of the latter authors, Zimmerman was the first author to propose a method to
solve fuzzy linear programming problems with fuzzy resources (constraints)
and fuzzy goals [17] [11]. Nowadays there are many fuzzification methods
proposed in the literature, for resources fuzzification, goal fuzzification as
well as for coefficients fuzzification (see good overviews in [18] [19] [6] [14,
20]).

2.2 Flexible fuzzification model used

The set of examples that are tested in this paper were formulated with a fuzzy
model proposed by Ribeiro and Moura-Pires [1] [2]. This model allows using
the following types of fuzzifications in the optimization problem: (a) fuzzy
coefficients in the objective function; (b) fuzzy coefficients in the left-hand
side of the constraints; (c) fuzzy resource limits of the constraints; (d) fuzzy
goals; (e) any combination of the previous. Assuming the general formulation
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for fuzzy optimization problems defined in (2) the fuzzy model used in this
work is,

K

max Z = E Ek-:ck
k=1

K
Zazk 'mk{27§7=}5i77’. = 17"'7N
k=1
x>0 (3)

The optimization model (3) is then transformed into the following system
of non-linear fuzzy constraints:

K
max Z = Zk:l Wg Tk
max M = min(iqik, foi, fhek)

Zszl Yir - Te{<, =, Z}I;i (4)
Yik = Qik
wr = Ek

k=1,....,.K +=1,...,.N =z,4,2>0

This mathematical transformation implies the addition of as many new
fuzzy constraints and as many new variables as the fuzzy coefficients of the
problem (e.g. for 2 fuzzy coefficients we add two new variables and two new
constraints to the formulation). Any new added constraint is represented
as an equality constraint with a fuzzy resource limit; this process allows
the handling of all constraints in a similar fashion. The fuzzification model
includes two objectives, the initial one and another objective (M) to obtain
the best of the worst violations of the fuzzy parameters, in the sense of the
maxmin model [11]. In general, the objectives of this fuzzification model are
two fold:

1) Find the best values for x, y and w that maximize the minimum ag-
gregated membership values (denoted by M), considering a threshold value
for a minimum acceptable violation level of the constraints.

2) Find the optimal value of Z that satisfies all the constraints as well as
the first step.

The aggregation described in 1) represents the intersection of all the mem-
bership values of the fuzzy parameters considered (i.e. coefficients, and/or
resource limits, and/or goals), to indicate that all the constraints/coefficients
have to be satisfied with a certain level (min). In addition, a threshold value
was included in our implementation to allow the decision maker to specify if
he/she wants an optimistic scenario (high satisfaction level), average scenario
(average satisfaction level) or a pessimistic scenario (low satisfaction level).
In point 2) it must be pointed that we are describing just a single objective
function, but the fuzzification model can handle multi-objective problems
[21].
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To clarify the non-linearity of the model lets consider that ¢ is a fuzzy set
that indicates how acceptable are the values around ¢g. Let w = (wy, wa, - - .,
wgk) be a set of objective function costs such that pg (wr) > 0. In fact,
for each different combination of values w; a different function to maxi-
mize over x is obtained and each set has a satisfaction level defined by:
pe(w) = ming pg, (wi) and Wy = {w : ps(w) > a}. The same logic applies
to constraint coefficients a;,. For more details about the fuzzification model,
see [1]).

One of the drawbacks of the fuzzification model is the addition of more
constrains and variables, whenever there are fuzzy coefficients. However, it
provides the advantage of handling all fuzzy coefficients in the same manner
of fuzzy constraints, hence, we can know how much each constraint (being
a resource or coefficient) is being violated. Another important drawback is
the non-linearity of the model. The compensation for this disadvantage is the
generality of the model since it can handle either linear or non-linear fuzzy
optimization problems

In conclusion we can say that this fuzzification model provides trade-
offs between constraint satisfaction (objective M) and the original problem
objective (Z). Both fuzzy coefficients é;; and &;; and the resources b; are all
handled in a similar fashion, i.e. as fuzzy constraints. Further, this method
allows manipulating either linear or non-linear fuzzy optimization problems,
as well as unfeasible crisp problems [1] [21] [2].

2.3 Solution algorithm: Simulated Annealing (SA)

Before discussing the main characteristics of the SA algorithm and of our
implementation, we need to clarify why we selected the SA algorithm for
solving the general fuzzification model (4), used in this work. First, and most
important, since our fuzzification model is non-linear we need an algorithm
that was independent of the problem to be solved, i.e. an algorithm that could
solve either linear or non-linear optimisation problems. Second, it is to easy
to understand because the parameters have an analogy with the annealing
process of a solid [22] and the algorithm does not have too many parameters
to handle. Third, since it is a guided-random search algorithm, it allows us to
control the search for the “’optimum” (e.g. with parameter temperature and
the stopping criteria) [22]. Fourth, the algorithm is quite simple to implement
and the computational time to achieve “good” results is quite acceptable.
In 1983, Kirkpatrick and others originally proposed the Simulated Anneal-
ing algorithm using, as mentioned, an analogy with the annealing process of
a solid [23] [22]. The objective of an algorithm of this nature is to find the
best solution among a finite number of possible solutions, however, it does
not guarantee that the solution found is indeed the global optimum. This
last characteristic restricts its use to the cases where “good” local optima
are acceptable. The SA technique is also interesting because it allows finding
near-optimal solutions within a reasonable computational time frame. The
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worst drawback of the SA algorithm is the need to provide “good” initial
points to run the algorithm — without good initial points the simulation can
get easily stuck in a local minima [2].

The SA algorithm requires the definition of a neighbourhood structure,
as well as the parameters for the cooling process [22]. A temperature param-
eter allows distinguishing among deep or slight alterations in the objective
function. Drastic alterations occur at high temperatures and small or slight
modifications at low temperatures. The four basic requirements for using the
SA algorithm in combinatorial optimization problems are: a concise problem
description; a random generation of the alterations from one configuration to
another; an objective function that includes the utility function of the trade-
offs; and a definition of the initial state, of the number of iterations to be
executed for each temperature and its annealing process.

In general we can say that we have to specify: (a) how to generate a statey,
neighbour of x; (b) which aggregation function (M) to use; (c¢) the selection of
number of neighbours to generate; (d) the temperature decrease function; (e)
and finally the algorithm stopping criteria. In our implementation we followed
the fuzzification model described in (4) but with the simplification of assum-
ing a single objective (Z), besides the aggregated violations of constraints
(objective M in (4)). Further, when we use the SA algorithm for solving
fuzzy optimization problems, the decision maker can select thresholds levels
(a-cuts) as well as the tolerances/deviations (i.e.fuzzification) for each con-
straint parameter and/or for each objective function’s coefficient and/or for
each constraint’s coefficient. In addition, we must point that this implemen-
tation was based on a first prototype explained in [2] but with modifications
and additions, as for example the notion of seed [3].

As mentioned, we included in the algorithm implementation the notion
of seed for the random numbers generation [22] to allow the generation of
identical values (i.e. same random numbers), in different program executions
but for the same example. With the seed we can repeat the a priori condi-
tions for testing the same problem with different types of fuzzification (e.g.
coefficients or resources or both). For our tests we used a seed value of 1.

For more details about the SA algorithm and its implementation, used to
test the set of selected examples (after formulating them with the fuzzification
model (4)), see [3].

3 Set of linear examples tested and discussion of the
results

Considering that there are many methods proposed in the literature to solve
fuzzy optimization problems we selected arbitrarily a set of linear and non-
linear examples from the literature. We believe the set is a good sample to
compare different results with the ones obtained with our approach. Instead of
comparing the approach used in this work with other approaches our objective
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is to test a set of diverse linear and non-linear fuzzy optimization problems.
We solve the set of examples with our approach and then we compare our
results with both the crisp results and the fuzzy results of the authors (when
we have them). This is a more understandable and simple way to discuss
the benefits of our approach. We must point that in some of the examples
we made some simplifications to enable comparisons between our results and
the ones found in the literature. All modifications are explained with each
example presentation.

In order to standardize the tests we also made some assumptions regard-
ing the membership functions of the problems tested. In this work we always
use linear triangular membership functions to solve the examples. Accord-
ing to the sign of the equation (e.g. bigger than, equal to, less than) we
use the following notation: left-open-triangle= ]value, tolerance]; right-open-
triangle=[tolerance, value[; triangular= [left Tolerance, value, right Tolerance].
For the linear set of examples we followed the author’s fuzzy parameters limits
as close as possible. For the set of non-linear examples, instead of following
the deviations (membership functions limits) considered by the author we
simplified them to a 10% flexibilization either in the coefficients or in the
resources limits or in the goals. This 10% tolerance is smaller than the one
used by the authors but this strengths our claim of achieving better results.

The presentation and discussion of the examples (section 3 and 4) will
follow the steps:

e First we depict the initial example (proposed by each author) and the
fuzzified parameters that were considered in the respective method (when
we have them).

e Second, we transform the example with our fuzzification model (4) but for
reasons of space we only show this formulation for example 3.1. Besides
the authors fuzzy parameters limits we also show our fuzzy parameters
limits, if we performed some modification. We do not show our fuzzified
limits for the non-linear examples because, as mentioned above, they were
simplified to a 10% tolerance from the central value.

e Third, we solve the problem with the SA algorithm implementation, de-
scribed in sub-section 2.3, and we discuss and compare the results we
obtain with three thresholds (0.3, 0.6 and 0.9) with both the one pro-
vided by the author (denoted fuzzy-author) and the crisp result (when
we have it). In some cases we added another threshold solution to enable
us to compare our result with the similar one presented by an author.

It is important to remind that we will only show the mathematical trans-
formation formulation that is performed in the examples using (4) for the first
example (3.1.), because of two aspects: space considerations and because the
transformation is quite straightforward. Hence, we will only show the origi-
nal example formulation, the fuzzified parameters limits and the final results
comparison.
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Although our approach may consider all kinds of fuzzification, we solve
each example with just the respective fuzzification proposed by the authors.
This is the only way to make a meaningful comparison between results. As
mentioned, in some cases we did simplifications but they are indicated and
do not change the discussion.

In addition, we perform more than one simulation for each example, with
different threshold values, to obtain three different scenarios: optimistic (high
satisfaction level, 90%), average (average satisfaction level, 60%) and pes-
simist (low satisfaction level, 30%). These scenarios will provide more infor-
mation for comparative purposes and allow us to neglect the small modifi-
cations done in the fuzzification of the examples. For each alternative test
we also show the computational execution time that the SA implementation
took to solve the problem. This will allow us to assess the computational
effort of the fuzzification approach used.

3.1 Example by Tanaka, Ichihashi, Asai (in: [6])

In the case of Tanaka, Ichihashi and Asai method we used the example found
in [6] instead of the original one [24] because it is a simpler version using the
same method. The example is,

max 25x1 + 18z,
s.t &11.’1)1 + &12.’1)2 S 780
as1x1 + Q2222 < 380
Tj Z 0

(5)

where the fuzzy parameters were: a;; = [12,18]; a12 = [32,36]; by =]780, 850];
as1 = [19, 2].]; asos = [7, 13], b2 =]380,480]

Let us consider the following fuzzy parameters for the coefficients: a1; =
[12,15,18]; a12 = [31.96,34,36.04]; a2; = [19,20,21]; a2 = [7,10,13] and
for the resources identical limits. Now transforming the example with our
formulation (4) we obtain,

max Z1 = 25x1 + 18x»
(( max Z2 = min(uau sMayzs /J/(123 y Hagz s by s ubz)
s.t. y1171 + Y1222 < 7§0
Y2121 + Y222 < 380
Yy =15 (6)
Y12 = 34
Y21 = 2~0
Yoo = 10
Ti,Yi > 0

\

The solutions for our three thresholds, the crisp solution and the fuzzy
solution of the author are:
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A T To o Time

577.736 9.660 18.672 — —
623.54 12.14 17.78 04 —
673.267 12.336 20.270 0.3151 157
648.875 11.699 19.800 0.4144 167
644.708 12.320 18.707 0.6337 177
596.519 10.386 18.716 0.9024 17"

solutions

Crisp solution
Fuzzy Author
Fuzzy ours: a= 0.3
Fuzzy ours: a= 0.4
Fuzzy ours: a= 0.6
Fuzzy ours: a= 0.9

O otk W N = | 3k

Observing the results above we see that with our method most of our
solutions, #3, #4, #5 are better than solution #2 of Tanaka, Ichihashi and
Asai. Only when we set a threshold of a@ = 0.9 our solution is worse than the
one by Tanaka, Ichihashi and Asai with g = 0.4 (596.519 vs. 623.54). Again
the results clearly show the trade-off that happens with our approach: for
better satisfaction of constraints and coefficients (less violation) we get worse
values for our objective function.

The time to achieve a solution with the SA implementation is quite rea-
sonable, for all our tested solutions (around 16 seconds).

3.2 Example by Carlsson and Korhonen [4]
Carlsson and Korhonen proposed an interesting method that considers a
complete fuzzification of linear programming problems. These authors used

the following example to illustrate their method,

max [1,1.5)z1 + [1,3)z2 + [2,2.2)23

s.t.
[3u 2) [27 )1'2 + [3 L 5) < [187 22)
[1,0. ) +[2,1)2s + [1,0)z3 < [10,40) (7)
[9,6)z1 + [20,18)z + [7,3)z3 < [96,110)
[7,6. ) + [20,15)z, + [9, ) z3 < [96,110)

where the intervals used for the coefficients and resources fuzzification are
represented by exponential functions with the intervals shown in the example.

We formulated this example using the the open interval limit as the central
point for the tolerances, in the same fashion as Lai & Hwang [6],

max 1.5z1 + 3z2 + 2.223
s.t.
2x1 + 1.5x3 < 22
0.5z1 + 1zo < 40 (8)
6x1 + 18z + 323 < 110
6.521 + 1525 + 8x3 < 110
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and our fuzzy parameters are: C; = [1,1.5,2]; Cy = [1,3,5]; C3 = [2,2.2,2.4];
ajlp = [1,2,3]; aiz = [0515,3], b1 :]18,22]; as1 = [0,05, ].]; agy = [0,1,2];
b2 :]10,40]; asy = [3,6,9]; aszg = [16, 18,20]; asg = [0,3,7]; b3 2]96,110];
aq1 = [6,6.5,7]; ag2 = [10,15,20]; as3 = [7,8,9]; by =]96,110].

As mentioned above, for comparative purposes we show the solutions
obtained with our fuzzy approach (2 simulations for different thresholds),
the crisp solution for the problem, and the respective two solutions from
author method.

solutions # 7 T1 To T3 p time

Crisp solution 1 12 0 0 6 - —

Fuzzy Author 1 2 2376 0 1.22 1044 0.3

Fuzzy Author 2 3 13.08 0 0 652 09 —

Fuzzy ours a= 0.3 4 34.110 4.220 3.030 7.220 0.33 1’24”
Fuzzy ours a= 0.6 5 29.938 8.733 2.666 2.693 0.68 8’5”

Fuzzy ours a= 0.9 6 17.663 2.723 2.970 2.119 0.95 23’36”

As can be observed in the results obtained, with our approach we ob-
tain much better results for the similar cases, #2 and #3 of Carlsson and
Korhonen versus ours #4 and #6. In particular, there is a big difference be-
tween our solution #4 and the equivalent Carlsson and Korhonen solution
#2 (34.110-23.76= 10.35!), if we note that the allowed violations of the fuzzy
parameters were similar p = 0.33 vs u = 0.3. The differences using both
methods are quite significant and show that by simplifying the membership
functions to triangular ones helped to obtain better results. The time to solve
this problem is large, particularly for high thresholds (e.g. a = 0.9), which
mean having less violation of the fuzzy parameters. Le. the S.A.algorithm im-
plementation takes time to find a solution when we require better satisfaction
levels (less flexibility) for completely fuzzified problems.

3.3 Example by Chanas [5]
Chanas used the following example (fuzzy resources) to test his method,

max 3x; + 4xs + 4x3
s.t. 6z1 + 3zo + 4zs < 1200
521 + 4y + 5z3 < 1550
xX; Z 0

(9)

where the fuzzy parameters were Z = [1600,1750[; by =]1200,1300]; be =
11550, 1750].

In our approach the formulation and fuzzy parameters used are identical
and the solutions obtained were:
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VA T To T3 I time

Crisp solution 1550 0 387.5 0 — —
Fuzzy Author 1649.8 0 41245 0 057 —

solutions #
1
2
Fuzzy ours o= 0.3 3 1691.732 0.792 416.918 5421 0.3 16”
4
5
6

Fuzzy ours a= 0.4 1656.010 2.929 408.313 3.492 0451 13”
Fuzzy ours a= 0.5 1646.578 3.090 405.108 4.219 0.5102 16”
Fuzzy ours a= 0.6 1626.023 2.195 402.956 1.905 0.6080 14”

Observing the results we see that our solutions are better only for a p <
0.5. This implies that we need to violate the constraints a little more than with
the Chanas parametric approach to obtain better results. However, Chanas”
method does not handle a complete flexibilization of the model and does not
have the facility of setting a threshold satisfaction level. For example, with
a smaller violation of the constraints (u = 0.3 versus pu = 0.57) we obtain
a better level for the objective function (1691.732 versus 1649.8). Of course,
in our method, the higher the violation of the constraints the smaller the
objective function is.

Chanas [5] also solved other examples using his parametric method such
as Zimmermann multi-objective example (example 3.10). Since the results
obtained were similar for both authors, we leave the comparison of those
results for later.

3.4 Example by Lai & Hwang [6]

Lai and Hwang presented an example with fuzzy resources to discuss their
parametric method,

max 4z + 5z + 9x3 + 11lx4
st.x1+xo+2x3+24 < 15
Tx1 + 52 + 33 + 224 < 120 (10)
31 + 529 + 1023 + 1524 < 100
z; >0

where the fuzzy parameters were b; =|15, 18]; bs =]100, 120]. Our formu-
lation followed the same fuzzy parameters tolerances. The results obtained
were:

solutions Z 1 x2 3 Z4 p o time

99.29 7.14 0 7.86 0 - —
101.28 7.283 0 8017 0 0.1 —
105.248 7569 0 8331 0 0.3 —
117.19 8.427 0 9273 0 09 —
116.463 8.394 0.210 8.246 0.693 0.11 20”
110.686 8.628 0.339 7.018 1.029 0.33 19”
101.223 6.852 0.453 7.746 0.167 0.90 19”

Crisp solution

Fuzzy Authors 7=0.1
Fuzzy Authors 7=0.3
Fuzzy Authors 7=0.9
Fuzzy ours: a= 0.1
Fuzzy ours: a= 0.3
Fuzzy ours: a= 0.9

N ootk w3k
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Comparing results #2 and #3 from Lai and Hwang with our correspond-
ing first two solutions (#5 and #6) we see that our method performs better
than the authors method, i.e. we obtain higher objective function values.
However we get a smaller value for solution #7 vs. #4 because our phi-
losophy is that for higher satisfaction values of the fuzzy parameters (i.e.
less violation of constraints) we should “pay” more. We do have a trade-off
between better solutions and bigger violation of the fuzzy parameters.

Lai and Hwang also tested the same problem for bigger violations of the
constraints, but since our method would always perform better (due to its
generality) for lower thresholds (higher violation of constraints) we did not
perform more comparisons.

3.5 Example by Sakawa [7]

Sakawa presented the following multiple objective example,

min Ci1x1 — 429 + T3
max —3x; + Cooxa + T3
equal 5x1 + zo + Cs313
s.t. a11®1 + G102 + 33 < 12
1 + 229 + az3x3 < by

(11)

where the fuzzy parameters are C1; = [0, 2, 2.5]; Ca2 = [—1.25,—-0.75, —0.25];
033 = [—0.25,0, 1]; ail = [0,3,4]; a2 = [0.5,1,1.5]; aszz = [0.5,1,1.5]; b2 =
[8,12,14].

In order to use our SA implementation we have to transform the problem
into a single objective one. It should be noted that our fuzzification model
(section 2.2.) allows solving multiple objective problems but the implemented
algorithm solution is not yet prepared for this. Hence, we start by considering
the following simplifications in the objective functions,

max —0112131 + 4.%'2 — I3
max —3x; + Cyaxy + T3 (12)
max 51 + T2 + C3323

After we use a simple combination of the objectives to obtain a single
objective and our formulation of the example becomes,

max —2x; + 42y — 23 — 3z + 0.7522 + x3 + 51 + T2 + 0z3
s.t. 3z + 120 + 3rz <12
Ty + 27 + 123 < 8
z; >0

(13)

where our fuzzy parameters are identical to the above except for by =|8, 14].
The solutions obtained were:
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solutions # A T To T3 I time
Crisp solution 1 17 0 4 0 — —
Fuzzy Author 2 12.91(*) 2.3074 2.3443 1.921 0.65 —
Fuzzy ours: a= 0.3 3 34.729 0.196 5.756 0.000 0.3737 36”
Fuzzy ours a= 0.6 5 25.552 0.015 4.943 0.000 0.6773 1’34”
Fuzzy ours: = 0.9 6 19.281 0.016 4.276 0.000 0.951 7°39”

(*) approximate solution calculated from the three O.F. in Sakawa example.

In this case it is more difficult to compare the results because we made
some assumptions in the simplifications to obtain a single objective. How-
ever, if we consider that the decision maker wants to have the best possible
value for all objectives and that the equality objective can be transformed
into a maximizing objective, then our results are much better than the ones
presented by Sakawa (for all solutions #3, #4, #5, #6). It should also be
noted that there seems to be a correlation between the time to solve prob-
lems and higher threshold levels (less violation) when the problems include
fuzzification of some coefficients (time=7"39" for #6). Our SA implementa-
tion algorithm behaviour decreases when there is an increase in both fuzzy
parameters and higher satisfaction values for the violations (less flexibility).

3.6 Example by Delgado, Verdegay, Vila [9]

Delgado, Verdegay and Vila illustrated their method with the following ex-
ample,

max 5x1 + 6x2
s.t. 3xy + 4wy < 18
é:l,'l + i.’L‘Q < 7
xT; Z 0

where the fuzzy parameters were: a11 = [3,2,4]; a12=[4, 2.5, 5.5]; by =
[18,16,19]; as1 = [2,1,3]; az2 = [1,0.5,2]; by = [7,6,9]. These authors then
construct two alternative auxiliary problems to handle the fuzzy parameters
with their parametric method. In this paper we only discuss the authors
solutions for the first auxiliary problem.

Our fuzzy membership functions limits are: a;; = [2,3,4]; a1z = [2.5, 4,
55]7 bl :]187 19]7 az1 = [17273]5 a2 = [057 12572]’ b2 2]77 9]

The solutions obtained were:
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solutions # Z T1 To p time

Crisp solution 1 28 2 3 — —
Fuzzy Author 7= 0.3 2 31.22 2.14 342 0.7(*) —
Fuzzy Author 7= 0.6 3 29.84 2.08 3.24 0.4(*)

Fuzzy Author 7= 0.9 4 28.46 2.02 3.06 0.1(*) —
Fuzzy ours a= 0.3 5 34.36 2.581 3.576 0.3380 9”
Fuzzy ours a= 0.6 6 31.77 0.656 4.749 0.6402 9”
Fuzzy ours a= 0.9 7 29.63 1.337 3.658 0.9062 14”

(*) this corresponds to (1 — 7).

Comparing the results for the same 7 and a we see that with our approach
we always obtain better results than the parametric method proposed by
Delgado,Verdegay and Vila. Our method is more flexible, hence it allows a
wider search of space. In terms of time our algorithm performed quite well
considering it has fuzzy coefficients and that solution #7 has high satisfaction
value.

We also tested other examples by the same authors Delgado,Verdegay,
Vila and Campos [25] [10] for their parametric method. Since their method
did not change our results proved to be always better. For reasons of space
we will not present these results.

3.7 Example by Zimmermann [11]

Zimmermann was the first author to propose a fuzzy method to deal with
fuzzy resources. The example he presented to discuss his symmetrical method
was,
min 41400x; + 44300x5 + 48100x3 + 49100z 4
s.t. 0.84x; + 1.44x5 + 2.16x3 + 2.424 < 170
16x1 + 1622 + 1623 + 1624 < 1300

(15)

and the fuzzy parameters limits were: b; = [160, 170, bs = [1200, 1300[ and
bs = [0, 6.

To solve this problem with our method we do not need to make any
modification in the above formulation. Because we already tested problems
with only fuzzy resources in this test we only used two thresholds, 0.3 and
0.6 because they are enough to draw conclusions.

The solutions obtained were:

solutions # Z z1 T2 T3 T4 p time
Crisp solution 1 3,864,975 6 1629 0 66.54 — —
Fuzzy Author 2 3,988,250 17.411 0 0 6654 — —

Fuzzy ours a= 0.3 3 3,701,349 4.058 11.743 2.777 58.647 0.3560 6"
Fuzzy ours a= 0.6 4 3,759,867 5.540 14.401 0.200 58.716 0.6170 6”
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As Zimmmermann comments in his book his solution is not very good
for this example (the results are worse than the crisp solution). With our
approach the results tested (#3 and #4) are both significantly better than
the crisp and Zimmermann solutions (#1 and #2). This clearly shows the
flexibility of our approach compared with the symmetric method of Zim-
mermann. In addition the computational time to solve this problem is quite
small, which means that the SA algorithm quickly obtains a good solution.

3.8 Unfeasible crisp example (without crisp solution) [12]
This following example is an unfeasible crisp problem,

max 40xz1 + 302>
s.t. 0.4x1 + 0.525 < 20
0.23]2 S b)
0.6z + 0.3z, <21
1 Z 30
T2 Z 15

(16)

However, when we fuzzify the resource limits or even the resource limits
and the constraints coefficients we can find a feasible solution. We tested the
two types of flexibilization (one test for resources and another for resources
and coefficients) using the 10% tolerance from the preferred value (the given
ones).

The solutions obtained for only fuzzified resources (B;) are,

solutions VA 1 i) B B> Bs By By 1% time

Crisp solution No No No — — — — — —
Fuzzy Author 1570 28 15 — - — — — —
Fuzzy ours a=0.1 1891.8 33.00 19.06 22.73 3.81 25.52 33.00 19.06 0.25 48”
Fuzzy ours a=0.3 1882.7 30.98 21.45 23.12 4.29 25.02 30.98 21.45 0.33 45”
Fuzzy ours a=0.6 1766.9 28.37 21.07 21.88 4.21 23.34 28.37 21.07 0.61 1’'4”
Fuzzy ours a=0.9 1598.6 28.97 14.66 18.92 2.93 21.78 28.97 14.66 0.90 1’5"

The solutions for fuzzified resources and coefficients are,

solutions 7Z T To p time
Crisp solution No No No — —
Fuzzy Author 1570 28 5 — —

Fuzzy ours a=0.1 2180.05 32.61 24.26 0.14 18"
Fuzzy ours «=0.3 1999.69 33.14 19.06 0.40 18”
Fuzzy ours a=0.6 1841.28 30.22 19.79 0.62 19”
Fuzzy ours a=0.9 1621.35 29.12 14.62 0.90 20”

and the solutions for the fuzzy coefficients and fuzzy resources are now:
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A1 Az Cui Cia Co1 C3i Csa By By Bs By By

a=0.1 43.59 32.22 0.37 0.46 0.20 0.61 0.30 22.80 6.14 24.19 24.58 30.03
a=0.3 42.13 31.65 0.39 047 0.21 0.57 0.31 21.77 3.95 24.98 33.14 19.06
a=0.6 40.84 30.70 0.39 0.51 0.21 0.58 0.29 21.74 4.06 22.30 30.22 19.79
a=0.9 40.47 30.29 0.40 0.50 0.20 0.59 0.30 19.13 2.91 21.68 29.12 14.62

The performance of the SA algorithm in this example is quite enlightening.
The time to solve a more flexible problem is much smaller than when we are
less flexible (just fuzzy resources). The reason is that with more flexibility we
obtain many more possible solutions to choose from.

Another interesting aspect is that all solutions found in this work are
better in terms of the objective function value, but in terms of violating
constraint 4 (the one that is causing problems) for a small threshold we have
more violation (z; = 24.58 versus z; = 28), i.e. we violate more for lower
thresholds and this should not be the case. We believe the reason for this
is due to the nature of the SA algorithm (sometimes it gets stuck in local
optimum [2] [3]). For the other thresholds we obtain better results and less
violations.

This example clearly shows the potential of using a fuzzy approach to
obtain results for otherwise unfeasible problems.

4 Set of non-linear examples tested and discussion of
the results

In this section we will present some non-linear examples from the literature.
However, most of the examples selected are crisp and not from fuzzy au-
thors because there are not many fuzzy methods that can handle non-linear
problems. Some exceptions can be seen in the following books [14] [7, 15].
However, since most of the examples were too big, in this section the two
fuzzy examples discussed are from Sakawa s book [7].

In summary, the selected example set to be tested with our fuzzy approach
is: (4.1) a non-linear peak-load pricing problem [13]; (4.2) a non-linear sales
force allocation problem [13]; (4.3) and (4.4.) two non-linear fuzzy examples
from Sakawa. [7], one with only fuzzy goals and another with fuzzy goals and
fuzzy coefficients.

For this set of non-linear problems we considered a simplification of using
deviations of 10% for all resources coefficients or goals fuzzifications. Le. the
membership functions were constructed considering a fuzzification of 10%
from the preferred value of the resource or coefficient or goal value to be
fuzzified. In addition, for all our solutions we show the values obtained for
the fuzzy parameters.
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4.1 Crisp peak-load pricing example [13]

This is a crisp peak-load pricing problem that we fuzzified to assess what are
the gains obtained by being flexible and how the fuzzy approach can handle
non-linear problems. We tested the fuzzification of all the variables coefficients
with the above mentioned 10% tolerances. The example formulation is,

max 60P — 0.5P% + 0.2FP + 40F — F? — 10C
st.60—0.5P +0.1F < C
40+01P-F<C
F,P,C >0

(17)

The solutions obtained for the three thresholds considered are:

solutions Z P F C § time

Crisp solution 2202.3 70.31 26.53 275 — @—
Fuzzy ours a=0.1 2903.30 75.08 27.83 29.40 0.15 32~
Fuzzy ours a=0.3 2715.25 71.64 24.48 28.59 0.30 44”
Fuzzy ours a=0.6 2513.14 74.59 28.75 25.72 0.61 1°03”
Fuzzy ours a=0.9 2274.75 66.56 25.86 29.26 0.95 1’51”

And the fuzzy parameters solutions are:

All A12 A13 A14 A15 AIG Cll 012 013 021 C22 023

a=0.1 64.86 0.458 0.197 43.16 0.929 9.49 60.78 0.541 0.095 40.04 0.099 1.013
a=0.3 64.20 0.473 0.211 42.40 0.941 10.53 59.40 0.466 0.104 37.32 0.097 0.989
a=0.6 62.28 0.485 0.196 41.48 0.961 9.81 61.80 0.492 0.096 38.64 0.101 0.962
a=0.9 60.60 0.495 0.201 40.28 0.990 9.93 60.24 0.497 0.101 40.28 0.099 1.006

As can be observed, by being flexible the results improve considerably.
Even considering a threshold of 90% (meaning that we only allow a violation
of constraints of 10% or that we want a satisfaction for our constraints of
90%) we do obtain better results than the crisp solution, Z = 2274.75 versus
crisp Z = 2202.3. All the other results for the objective function are much
better than the crisp solution. It seems that the expense of considering small
deviation on the coefficients pays off in term of obtaining higher profits.

If we consider a further fuzzification of the resources and/or goals we
could have achieved even better results. However, we must point that these
better results would be obtained at the expense of using more or less resources
(depending on the constraint sign).

In terms of time to solve the problem this example is not very good for
higher thresholds a = 0.6 and 0.9 because the SA took more than one minute
to solve a problem with 3 variables and 2 constraints. However, if we think it is
a non-linear problem (hence more difficult to sole) the results are acceptable.
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4.2 Crisp sales force allocation example [13]

This is a small sales force allocation crisp problem with only non-negativity
constraints (it is a simplified version of a problem by Lodish et al in: Interfaces
18, 1 (1996): 5-20, presented in [13]). We should also point that the authors
also show an integer version of the same problem, but here is not considered.

max 20029 + 150297 + 180235 + 3002$% — 50z; — 50z5 — 5023 — 5074
st.xz; >0
(18)
The solutions obtained for this problem with the different thresholds are:

solutions A T1 T r3 x4y p time

Crisp solution 1125.876 4 256 6.85 23 — —
Fuzzy ours a=0.1 1551.41 5.31 34.39 11.43 1.68 0.38 §&”
Fuzzy ours a=0.3 1474.81 8.40 33.17 6.66 3.91 0.43 9”
Fuzzy ours a=0.6 1458.75 4.29 29.17 8.77 8.77 0.77 10”
Fuzzy ours «=0.9 1204.00 5.54 32.11 7.54 2.58 0.90 12”

And the results for the objective function fuzzified coefficients are:

All A12 A13 A14 A15 A16 A17 A18

a=0.1 20742 162.30 191.73 325.83 47.32 45.63 46.46 52.17
a=0.3 206.87 162.27 194.81 307.36 48.31 45.64 46.38 53.59
a=0.6 209.84 160.91 191.40 316.34 50.24 46.20 46.09 51.77
a=0.9 201.65 152.97 183.50 305.75 49.01 49.19 50.28 49.31

The results obtained for this example show a similar behaviour than in the
previous example. All the solutions are better than the crisp solution; hence,
we may say that flexibility is compensatory in terms of results. Obviously,
as in the previous example, the higher the threshold (more satisfaction of
constraints) the less flexible the problems are and lower results are obtained.

The curiosity of this example is that we are only fuzzifying the coefficients
of the objective function and hence we can observe exactly what are the
gains obtained for deviations on the coefficients (in each test with different
thresholds).

Interesting enough because this example does not have constraints, be-
sides the non-negativity ones, the time to solve the problem is quite small
(maximum 12 seconds). It does show that the calculations of the constraints
add a considerable weight to the SA algorithm.
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4.3 Example 7.2. by Sakawa [7]

In this example of a non-linear problem the author only considered fuzzy
goals,
max Fy = 2z7 + 4(z2 — 20)? + 3(z3 — 15)2
min Fy = (z; — 10)2 4 2(x5 — 25)2 + 3(z3 + 5)?
equal Fy = 3(z; + 15)% + 2(z5 + 10)2 + (25 + 20)?
st (z1 +5)% + (w2 + 8)? + (w3 — 10)2 < 200

(19)

The fuzzy goals limits, proposed by the author, were: Fi =]950,2200];
F, =[1900, 1750[; F5 = [1300, 1900, 2500].
Our solutions and the fuzzy solution of the author are:

solutions I3 Fy F3 1 T2 T3 p time

Crisp solution - - - - - -
Fuzzy Author 2063.41 1646.96 1853.06 4.3348 0.0225 3.0358 — —
Fuzzy ours o=0.1 2171.81 1418.50 1752.27 3.9191 0.0744 1.8058 0.50 42"
Fuzzy ours @=0.3 2145.54 1439.67 1809.61 4.2278 0.0478 2.3287 0.61 40"
Fuzzy ours @=0.6 2156.05 1439.69 1800.25 4.1909 0.0148 2.2438 0.68 43”
Fuzzy ours @=0.9 2094.10 1471.61 1853.98 4.3236 0.0567 3.0570 1 52"

All the results for objective functions F; and F, that we obtained are
considerably better than the author ones. Of course the less flexibility we
allow the worse results we obtain (F; with @ = 0.9 is 2094.10 is relatively
better than the author F; = 2063.41). The more intriguing case is the equality
objective, F3, where only for the less flexible, F; with a = 0.9, our results
are better than the author one. We believe that the reason for this is that we
only considered 10% tolerance on the memberships; hence, the values close
to the preferred one have bigger membership values that the ones obtained
by the author.

4.4 Example 7.6 by Sakawa [7]

In this example Sakawa considered the fuzzification of the parameters that
are depicted in the example formulation, as well as the goals:

min F; = (JL‘l + 5)2 + Anx% + 2(.%'3 — A12)2
min Fy = Aoy (z1 — 45)% + (22 + 15)% + 3(z3 + A2)?
equal Fy = Ag; (21 + 20)* 4 Asa(22 — 45)” + (23 + 15)°
s.t. lel + B2.CL'2 + B3.’L’3 S 100
z; < 10
T; > 10

(20)

The fuzzy parameters limits proposed by the author were: A;,=[3.8, 4,
4.3], A12 = [48.5,50,52], Ag; = [1.85,2,2.2], Azx = [18.2,20,22.5], A3; =
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[29,3,315], A32 = [47,5,535], Bll = [09, ]., 11], B12 == [08, ].7 12], Bl3 =
[0.85,1,1.15]. The author also fuzzified the goals and the limits proposed are:
f1 = [5400,3300[; f2 = [6900,3900[, f3 = [7800,10000,13300]. We must
remind the readers that we simplified these deviations to 10% for all fuzzy
parameters.

The solutions given by the author, as well as our solutions were:

solutions Fy Fy F3 z1 T2 T3 p time

Crisp solution - - - - - - — —
Fuzzy Author 4816.80 4526.11 10455.02 8.177 5.878 2.258 — —
Fuzzy ours a=0.1 3784.17 4407.86 11017.46 7.990 3.980 3.433 0.22 34”
Fuzzy ours a=0.3 4242.07 4494.45 10780.07 7.841 5.064 2.390 0.66 45”
Fuzzy ours a=0.6 4625.42 4512.46 10371.89 7.749 5.736 1.155 0.75 36”
Fuzzy ours =0.9 4787.88 4508.31 10350.00 7.868 5.526 1.785 0.90 53”

and our solutions, found for the fuzzy parameters are:

All A12 A21 A31 A32 Bll Bl2 BlB

a=0.1 3.919 45.584 1.923 18.272 3.221 4.846 1.064 1.069 0.956
a=0.3 4.072 46.959 1.934 19.377 3.175 5.027 1.058 1.021 1.077
a=0.6 3.865 47.715 2.036 19.320 3.028 5.046 0.973 1.057 0.950
a=0.9 4.004 49.219 1.967 19.622 2.974 4.979 1.001 1.014 1.016

As can be observed we obtained considerably better results for F; and F5,
for the three thresholds. Even for a = 0.9 the results are better, particularly
for F} = 4787.88 (our solution) versus F; = 4816.8 (author solution). In this
example we also obtain better results for the equality objective, F3, except
for lower thresholds, & = 0.1 and 0.3. In terms of the results obtained for
the coefficients ours are quite close to the central value, given by the author,
which represents the preferred value for that coefficient. This is due to a more
restrict fuzzification of the coefficients (only 10% tolerance), than the author
considered. However, we still obtain better results for the objective functions
and close enough values for the fuzzy parameters. This was an interesting
example to test because it included fuzzification of coefficients and goals.

In terms of time the SA took to solve the problem, even though it cannot
be compared with other results (the solving time was not a consideration
in the author proposal) it seems quite reasonable when compared with the
previous example (4.3). For the more restrictive case, @ = 0.9, it took 53
seconds versus 52 seconds for the same threshold of the previous example.
Further, comparing the times to solve the two examples (4.3 and 4.4) we
can say that the SA solving time is more dependent on the dimension of the
problem than in being more or less fuzzified.
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5 Conclusions

This paper compared the results obtained by solving several examples with a
fuzzy approach and with different methods proposed in the literature. Most
of the results obtained with our approach are better than the ones shown by
other methods. Even for some methods that showed better results, for simi-
lar satisfaction values, we could provide better results for lower satisfaction
values since our method allows simulations with different thresholds.

The selected set of examples included seven linear examples, four non-
linear and one unfeasible problem. We believe this set of examples provided
a significant test-bed for discussion of the method used.

We also showed that the approach allows a way to study the trade-off
between better objective function and worse satisfaction values for the fuzzy
parameters (i.e. more violation is required) and vice versa. This character-
istic, in combination with its generality, makes this method a very flexible
method. We also pointed the main disadvantage of the fuzzification model
used, because the flexibility and generality of the approach is gained by hav-
ing a larger dimension formulation as well as a non-linear one.

Finally, we showed that using the simulated annealing algorithm for solv-
ing fuzzy optimization problems is a good solution technique for solving this
type of problems. However, the implementation needs further improvements
to allow using the full potential of multiple objective fuzzy optimization prob-
lems as well as other types of membership functions.
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